Using seabirds and habitat features to identify ‘hotspots’ in the California Current

N. Nur, J. Jahncke, J. Howar, M. Herzog, J. Wiens and many collaborators
Support MPAs in federal waters

- Identify marine ‘hotspots’ in California Current System
- Use results to inform marine spatial planning in the U.S. West Coast.
Marine birds aggregate to forage in predictable areas determined by bathymetric and oceanographic features
How did we accomplish this work?

Statistical Models

Top Predators
Seabird data coverage

- NMFS RF (1997 – 2006) 10yr
- CalCOFI (1997 – 2006) 10yr
- ORCAWALE (2005 – 2008) 2yr
- NMFS SR (2005 – 2008) 2yr

Lots of data
Uneven coverage
WA, OR and NorCA
Variables included during modeling

Bathymetric

• Depth (minimum)
• Depth (average)
• Contour Index
• Dist 200-m isobath
• Dist 1-km isobath
• Dist 3-km isobath
• Dist nearest land

Other

• Year
• Julian date
• Latitude
Model development

- Modeled seabird abundance based on habitat features determined by bathymetry or oceanography.
- We used Bagged Decision Trees for statistical analysis (advanced data mining technique used to discover patterns in data).
- We controlled for spatial and temporal differences in the onset of upwelling.
- We controlled for Pacific basin scale oceanographic conditions.
- We modeled a total of 16 birds (2 of conservation concern).
Observations VS Predictions – Common Murre

Observed data
(all cruises, all seasons, all years)

Predicted Average Abundance in May

Density
- Low (>0 - 5 / km²)
- Med (>5 - 20 / km²)
- High (>20 / km²)

No Birds Observed

Depth Contour
- 200 m
- 1000 m
- 2000 m

Predicted Average Abundance
- >10
- >2 - 10
- >1 - 2
- >0.5 - 1
- >0.2 - 0.5
- >0.1 - 0.2
- 0 - 0.1

200m isobath

Common Murre - Oct 97 to Oct 08
<table>
<thead>
<tr>
<th>Variables</th>
<th>BFAL</th>
<th>BOGU</th>
<th>BRAC</th>
<th>BRPE</th>
<th>CAAU</th>
<th>CAGU</th>
<th>COMU</th>
<th>FTSP</th>
<th>GWGU</th>
<th>HEEG</th>
<th>HERG</th>
<th>LHSP</th>
<th>RNPH</th>
<th>SAGU</th>
<th>SOSH</th>
<th>WEGU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>Julian date</td>
<td></td>
</tr>
<tr>
<td>Latitude</td>
<td></td>
</tr>
<tr>
<td>Depth (min)</td>
<td></td>
</tr>
<tr>
<td>Depth (avg)</td>
<td></td>
</tr>
<tr>
<td>Contour Index</td>
<td></td>
</tr>
<tr>
<td>Dist land</td>
<td></td>
</tr>
<tr>
<td>Dist 200-m</td>
<td></td>
</tr>
<tr>
<td>Dist 1000-m</td>
<td></td>
</tr>
<tr>
<td>Dist 3000-m</td>
<td></td>
</tr>
<tr>
<td>Transition date</td>
<td></td>
</tr>
<tr>
<td>SST</td>
<td></td>
</tr>
<tr>
<td>SSH</td>
<td></td>
</tr>
<tr>
<td>Chlorophyll</td>
<td></td>
</tr>
<tr>
<td>SOI 1-3 mo prev</td>
<td></td>
</tr>
<tr>
<td>PDO 1-3 mo prev</td>
<td></td>
</tr>
<tr>
<td>NPGO 1-3 mo prev</td>
<td></td>
</tr>
<tr>
<td>SOI 4-6 mo prev</td>
<td></td>
</tr>
<tr>
<td>PDO 4-6 mo prev</td>
<td></td>
</tr>
<tr>
<td>NPGO 4-6 mo prev</td>
<td></td>
</tr>
<tr>
<td>Prop. Dev. Explained</td>
<td>0.602</td>
<td>0.653</td>
<td>0.717</td>
<td>0.647</td>
<td>0.716</td>
<td>0.656</td>
<td>0.738</td>
<td>0.694</td>
<td>0.654</td>
<td>0.794</td>
<td>0.582</td>
<td>0.527</td>
<td>0.662</td>
<td>0.592</td>
<td>0.71</td>
<td>0.663</td>
</tr>
</tbody>
</table>

Model results – Location is most important

- **Bathymetry**
- **Oceanography**

Legend:
- **High**
- **Medium**
- **Low**

Prop. Dev. Explained
How did we use all these models?

- **Abundance:** summed standardized abundance of all species (each spp contributes equally to product)

- **Importance:** smallest set of cells that constituted 25% of the species’ top total abundance.

- **Persistence:** number of years that a cell was in the top 5% of predicted abundance for a particular species.

These were calculated on a seasonal basis and averaged across all seasons.
Hotspots – ABUNDANCE

Winter

Spring
Hotspots – PERSISTENCE (top 5%)
Conservation gap
Proposed Expansion Area

- Predicted ‘hotspots’ just south of Point Arena.
- Shelf area important foraging habitat for seabirds.
Our results show that the most important seabird habitat lies outside state Marine Protected Areas (MPAs) where threats from shipping, oil spills, and energy development remain.
Conclusions

• Bathymetric variables were more important in predicting ‘hotspots’.

• ‘Hotspots’ over the shelf often aligned well with current protected areas (e.g., National Marine Sanctuaries).

• ‘Conservation gap’ with important ‘hotspots’ from Cape Mendocino to Heceta Bank.
Acknowledgements

Resources Legacy Fund
National Fish and Wildlife Foundation
Moore Family Foundation
Faucett Family Foundation
Hellman Family Foundation
PRBO Donors

David Ainley, H.T. Harvey
Lisa Ballance, Southwest Fisheries Science Center (NOAA)
Glen Ford, Ecological Consulting Inc.
David Hyrenbach, Hawai’i Pacific University
Ken Morgan, Canadian Wildlife Service (Line P)
Jen Zamon, Northwest Fisheries Science Center (NOAA)
PRBO Staff, Interns and Volunteers

National Marine Fisheries Service (NOAA)
California Cooperative Fisheries Investigations (CalCOFI)
Scripps Institute of Oceanography (SIO, UCSD)
Fisheries and Oceans – Canada
Thank you!